

Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

Steve Benson Srivats Srinivasachar

Presentation Overview

- Project Overview
- Technology Fundamentals
- Project Scope
- Current Status
- Plans for Future Testing

Project Team

US Department of Energy - NETL **UND Institute for Energy Studies** Envergex LLC Lignite Energy Council/NDIC ALLETE Group Minnesota Power BNI Coal SaskPower Barr Engineering Solex Thermal

A Sask Power

COAL

BNI

Project Objectives

- Develop a process using solid sorbents that will efficiently capture CO₂ from flue gas streams and regenerate into a pure CO₂ stream, with a lower operating cost than current methods.
- Goal: 90 percent CO₂ removal at no more than 35 percent increase in the cost of electricity.
- Combine existing technologies to create a new sorbent which will have high CO₂ loading capacity and a process with low reaction energies.

Budget – Funding Sources

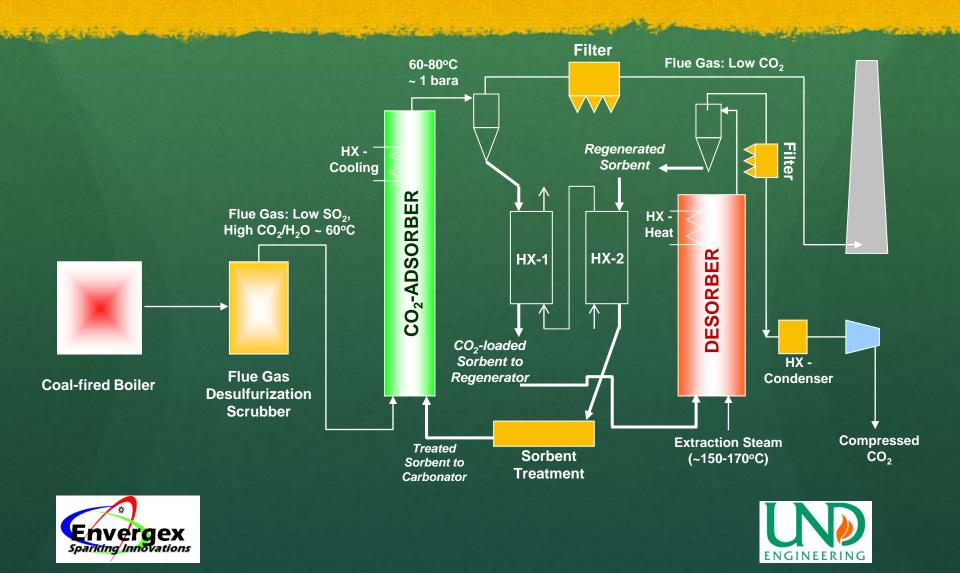
Performance period: 10/1/11 to 09/30/14

Background on the Proposed Technology and Scientific/Technical Merit

Technology Background

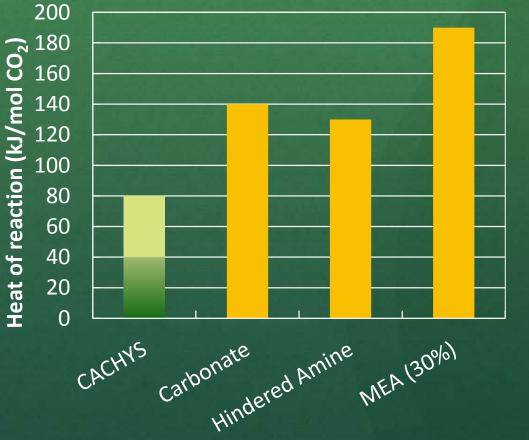
■ The hybrid sorption CACHYSTM process uses an additive-enhanced regenerable alkali carbonate sorbent for CO₂ capture.

Reactions


 M_xN_y (carbonate-based) + a.CO₂(g) \longrightarrow Product Product + Steam $\longrightarrow M_xN_y$ + a.CO₂(g)

- Sorbents prepared from bulk commodity materials low cost target.
- Reacts with CO₂ to form adduct. Reversible with the addition of heat.
- Additive increases adsorption kinetics and reduces sorption energy.
- Initial concept testing conducted by Envergex and UND under DOE STTR program.

CACHYSTM Hybrid Sorption Process


CACHYSTM Process Benefits

Benefits

- Low reaction heat ~ 40-80 kJ/mol CO₂
- ✓ High sorbent capacity
- ✓ Increased sorption kinetics
- Use of low cost, abundantly available materials

Challenges

- ✓ Confirmation of energetics
- Confirmation of sorbent capacity
- ✓ Sorbent integrity
- ✓ Sorbent handling

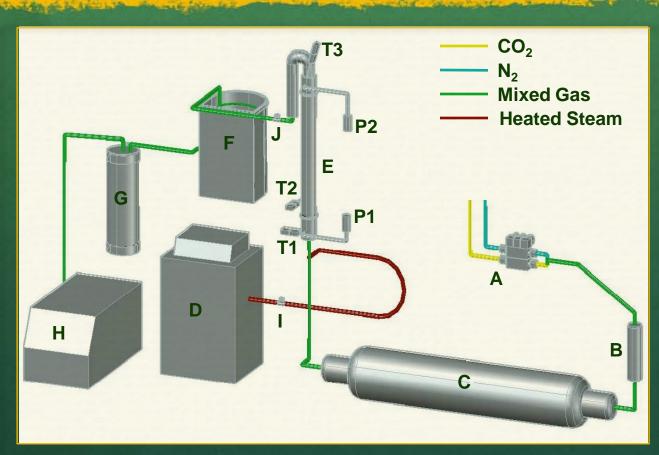
Project Scope

Technical Approach and Project Scope

- Scope of work includes eight main tasks:
 - Task 1: Project Management and Planning
 - Task 2: Initial Technology and Economic Feasibility Study
 - Task 3: Determination of Hybrid Sorbent Performance Metrics
 - Task 4: Bench-Scale Process Design
 - Task 5: Bench-Scale Process Procurement and Construction
 - Task 6: Initial Operation of the Bench-Scale Unit
 - Task 7: Bench-Scale Process Testing
 - Task 8: Final Process Assessment

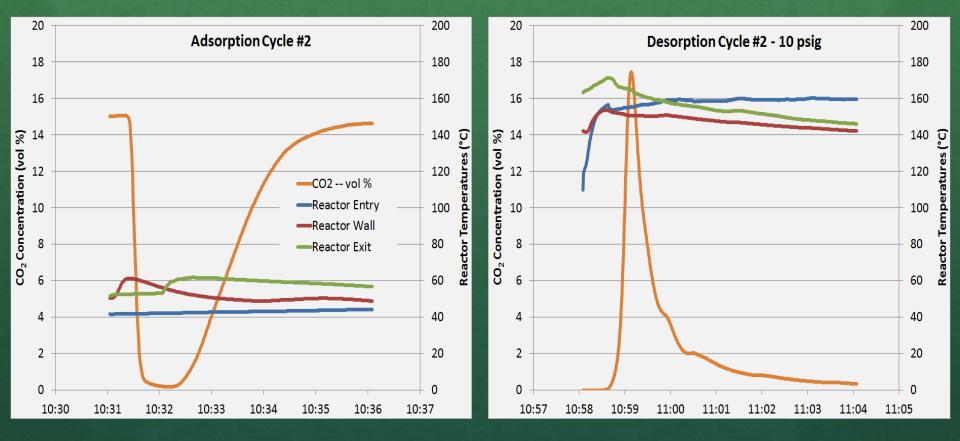
Decision Points and Success Criteria

	Decision Point		Basis for Decision/Success Criteria
Ēn	Completion of Budget Period 1 Year 1	1. 2. 3. 4.	Successful completion of all work proposed in Budget Period 1 Demonstrate sorbent CO ₂ equilibrium capacity of greater than 70 g of CO ₂ /kg of sorbent Demonstrate a heat of sorption of 80 kJ/mol of CO ₂ or less Submission of a Topical Report – Preliminary Technical and Economic Feasibility Study
		5.	Submission/approval of a Continuation Application to DOE
	Completion of Budget Period 2 Year 2	1. 2. 3. 4.	Successful completion of all work proposed in Budget Period 2 Submission of a bench-scale engineering design package Complete construction of a bench-scale CACHYS [™] system Submission of a test matrix for the bench-scale testing campaign
		5.	Submission/approval of a Continuation Application to DOE
	End of Project Year 3	 1. 2. 3. 4. 5. 	Successful completion of all work proposed Complete continuous testing of integrated bench-scale CACHYS [™] process for 1 month Submission of a Topical Report – Final Technical and Economic Feasibility Study Submission of a Topical Report – Preliminary EH&S Assessment Submission of a Final Report

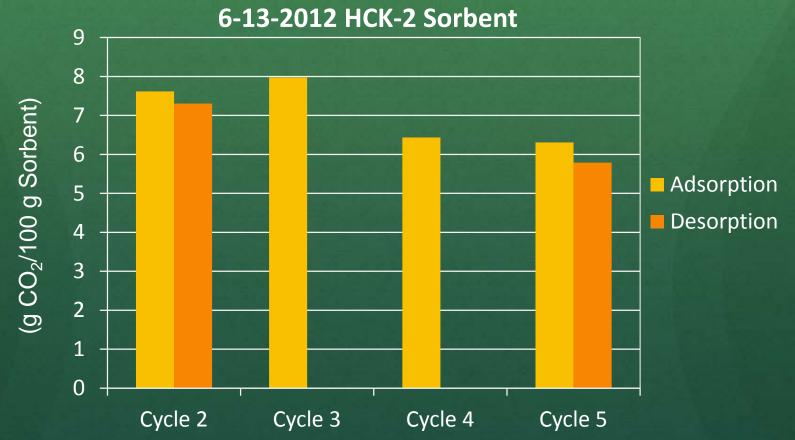


Project Results

Bed Reactor Testing

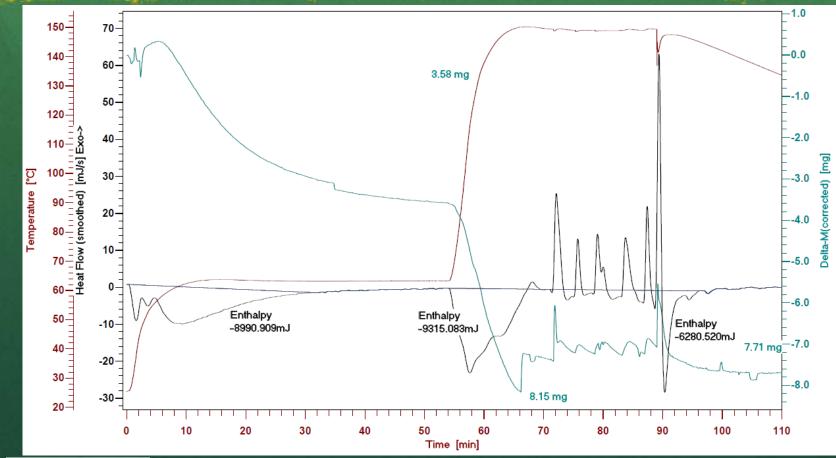


	Components		
Α	Mass Flow Controllers		
В	Bubbler		
С	Air Preheater		
D	Steam Generator		
E	Reactor		
F	Condenser		
G	Water Knockout Drum		
н	5 Gas Analyzer		
1	Manual Steam Control #1		
J	Manual Steam Control #2		
T1	Thermocouple – Air In		
T2	Thermocouple – Reactor Wall		
Т3	Thermocouple – Air Out		
P1	Pressure Transducer (Bottom)		
P2	Pressure Transducer (Top)		

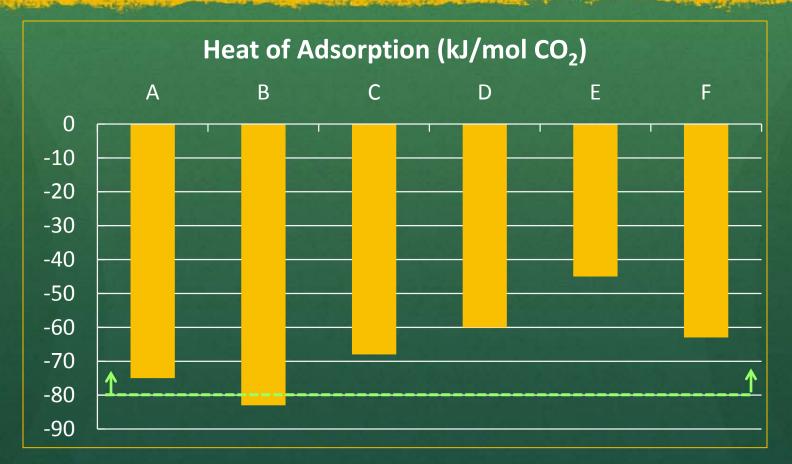

Bed Reactor Testing Results

CO₂ Adsorption Capacity

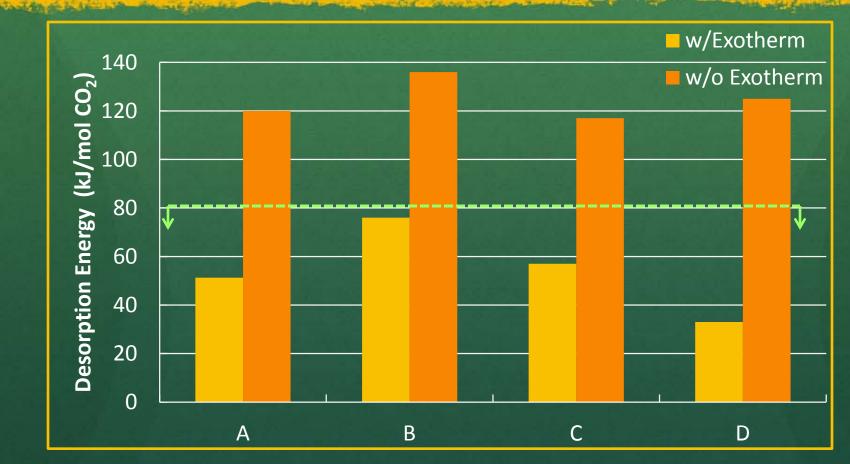
CO₂ Adsorption Capacity



6-26-2012 HCK-5 Sorbent


Adsorption-Desorption Cycle: TGA/DSC

CO₂ Sorption Energetics



JAST AN AN

CO₂ Sorption Energetics

Year 2

- Task 4. Bench-Scale Unit Design
- Task 5. Bench-Scale Unit Procurement and Construction
- Task 6. Initial Operation of the Bench-Scale Unit

<u>Year 3</u>

- Task 7- Bench-Scale Process Testing
- Task 8 Final Process Assessment

Acknowledgements

• Project Funding and Cost Share

- DOE-NETL
- Lignite Energy Council/NDIC
- ALLETE (Minnesota Power and BNI Coal)
- SaskPower
- Solex
- UND

• DOE-NETL Project Manager – Andrew Jones

Contact Information

Steven A. Benson, Ph.D. Institute for Energy Studies, University of North Dakota (701) 777-5177; Mobile: (701) 213-7070 steve.benson@engr.und.edu

> Srivats Srinivasachar, Sc.D. Envergex LLC (508) 347-2933; Mobile: (508) 479-3784 srivats.srinivasachar@envergex.com

